Cho hình chóp \(S.ABC\) có đáy ABC là tam giác vuông tại B và SA vuông góc mặt đáy \(\left( {ABC} \right)\), \(SB = 2a\), \(AB = a\)( tham khảo hình vẽ). Tính góc giữa SB và \(mp\left( {ABC} \right)\)
-
A.
\(90^\circ .\)
-
B.
\(60^\circ .\)
-
C.
\(45^\circ .\)
-
D.
\(30^\circ .\)
Bước 1: Tìm giao điểm O của đường thẳng a và \((\alpha )\)
Bước 2: Xác định hình chiếu A’ của điểm A xuống \((\alpha )\)
Bước 3: Suy ra: \(\left( {AO,(\alpha )} \right) = \left( {AO,A'O} \right) = \widehat {AOA'}\)
Do \(SA \bot (ABC)\)nên A là hình chiếu của S lên (ABC)
Ta có: \(\left( {SB,(ABC)} \right) = (SB,AB)\)
Xét \(\Delta SAB\) vuông tại A có:
\(\begin{array}{l}\tan \left( {SB,AB} \right) = \tan \widehat {SBA} = \frac{{SA}}{{AB}} = \frac{{\sqrt {S{B^2} - A{B^2}} }}{{AB}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \\ \Rightarrow \widehat {SBA} = {60^0}\end{array}\)
Đáp án B.
Đáp án : B