Cho hình chóp S. ABC có đáy ABC là tam giác vuông tại B và — Không quảng cáo

Cho hình chóp \(S ABC\) có đáy ABC là tam giác vuông tại B và SA vuông góc mặt đáy \(\left( {ABC} \right)\), \(SB = 2a\), \(AB = a\)( tham


Đề bài

Cho hình chóp \(S.ABC\) có đáy ABC là tam giác vuông tại B và SA vuông góc mặt đáy \(\left( {ABC} \right)\), \(SB = 2a\), \(AB = a\)( tham khảo hình vẽ). Tính góc giữa SB và \(mp\left( {ABC} \right)\)

  • A.
    \(90^\circ .\)
  • B.
    \(60^\circ .\)
  • C.
    \(45^\circ .\)
  • D.
    \(30^\circ .\)
Phương pháp giải

Bước 1: Tìm giao điểm O của đường thẳng a và \(\left( \alpha  \right)\)

Bước 2: Xác định hình chiếu A’ của một điểm \(A \in \left( \alpha  \right)\) xuống \(\left( \alpha  \right)\)

Bước 3: Suy ra: \((a;\left( \alpha  \right)) = (a;a') = \widehat {AOA'}\)

Do \(SA \bot (ABC)\) nên A là hình chiếu của S lên (ABC)

Ta có: \((SB,(ABC)) = (SB,AB) = \widehat {SBA}\)

Xét \(\Delta SAB:c{\rm{os}}\widehat {SBA} = \frac{{AB}}{{SB}} = \frac{a}{{2a}} = \frac{1}{2}\)

Suy ra: \(\widehat {SBA} = {60^0}\)

Đáp án B.

Đáp án : B