Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Gọi M — Không quảng cáo

Cho hình chóp S ABCD có đáy ABCD là hình bình hành Gọi M là trung điểm của BC, I là giao điểm của AM và BD, \(\left( \alpha \right)\)


Đề bài

Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của BC, I là giao điểm của AM và BD, \(\left( \alpha  \right)\) là mặt phẳng qua A, M và song song với SD. Mặt phẳng \(\left( \alpha  \right)\) cắt SB tại N. Tỉ số \(\frac{{SN}}{{SB}}\) là:

  • A.
    \(\frac{3}{4}\) .
  • B.
    \(\frac{1}{2}\).
  • C.
    \(\frac{2}{3}\).
  • D.
    \(\frac{1}{3}\).
Phương pháp giải

Sử dụng kiến thức về đường thẳng song song với mặt phẳng: Cho đường thẳng a song song với mặt phẳng (P). Nếu mặt phẳng (Q) chứa a và cắt (P) theo giao tuyến b thì a song song với b.

Tam giác ABC có hai đường trung tuyến BD và AM cắt nhau tại I nên I là trọng tâm của tam giác ABC.

Suy ra: \(\frac{{BI}}{{BD}} = \frac{1}{3} \Rightarrow \frac{{ID}}{{BD}} = \frac{2}{3}\)

Vì \(\left( \alpha  \right)\) và mặt phẳng (SBD) có điểm chung là I, \(\left( \alpha  \right)\)//SD, \(SD \subset \left( {DBD} \right)\) nên giao tuyến của \(\left( \alpha  \right)\) và mặt phẳng (SBD) là đường thẳng qua I song song với SD cắt SB tại N. Do đó, \(\frac{{SN}}{{SB}} = \frac{{ID}}{{DB}} = \frac{2}{3}\)

Đáp án : C