Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của BC, I là giao điểm của AM và BD, \(\left( \alpha \right)\) là mặt phẳng qua A, M và song song với SD. Mặt phẳng \(\left( \alpha \right)\) cắt SB tại N. Tỉ số \(\frac{{SN}}{{SB}}\) là:
-
A.
\(\frac{3}{4}\) .
-
B.
\(\frac{1}{2}\).
-
C.
\(\frac{2}{3}\).
-
D.
\(\frac{1}{3}\).
Sử dụng kiến thức về đường thẳng song song với mặt phẳng: Cho đường thẳng a song song với mặt phẳng (P). Nếu mặt phẳng (Q) chứa a và cắt (P) theo giao tuyến b thì a song song với b.
Tam giác ABC có hai đường trung tuyến BD và AM cắt nhau tại I nên I là trọng tâm của tam giác ABC.
Suy ra: \(\frac{{BI}}{{BD}} = \frac{1}{3} \Rightarrow \frac{{ID}}{{BD}} = \frac{2}{3}\)
Vì \(\left( \alpha \right)\) và mặt phẳng (SBD) có điểm chung là I, \(\left( \alpha \right)\)//SD, \(SD \subset \left( {DBD} \right)\) nên giao tuyến của \(\left( \alpha \right)\) và mặt phẳng (SBD) là đường thẳng qua I song song với SD cắt SB tại N. Do đó, \(\frac{{SN}}{{SB}} = \frac{{ID}}{{DB}} = \frac{2}{3}\)
Đáp án : C