Cho hình chóp S. ABCD có đáy ABCD là hình bình hành và góc — Không quảng cáo

Cho hình chóp S ABCD có đáy ABCD là hình bình hành và \(\widehat {SAB} = {100^0}\) Góc giữa hai đường thẳng SA và CD bằng bao nhiêu độ


Đề bài

Cho hình chóp S. ABCD có đáy ABCD là hình bình hành và \(\widehat {SAB} = {100^0}\). Góc giữa hai đường thẳng SA và CD bằng bao nhiêu độ?

  • A.
    \({100^0}\).
  • B.
    \({90^0}\).
  • C.
    \({80^0}\).
  • D.
    \({70^0}\).
Phương pháp giải

+ Góc giữa hai đường thẳng a và b trong không gian là góc giữa hai đường thẳng a’ và b’ cùng đi qua một điểm O và lần lượt song song (hoặc trùng) với a và b, kí hiệu \(\left( {a,b} \right)\) hoặc \(\widehat {\left( {a;b} \right)}\).

+ Góc giữa hai đường thẳng không vượt quá \({90^0}\).

Vì ABCD là hình bình hành nên \(AB//CD\)

Do đó, \(\left( {SA,CD} \right) = \left( {SA,AB} \right) = {180^0} - \widehat {SAB} = {80^0}\)

Đáp án : C