Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật, \(SA \bot \left( {ABCD} \right)\). Hình chiếu vuông góc của điểm D trên mặt phẳng (SAB) là điểm:
-
A.
S.
-
B.
A.
-
C.
B.
-
D.
E (với E là trung điểm của SB).
Cho mặt phẳng (P). Xét một điểm M tùy ý trong không gian. Gọi d là đường thẳng đi qua điểm M và vuông góc với (P). Gọi M’ là giao điểm của đường thẳng d và mặt phẳng (P). Khi đó, điểm M’ được gọi là hình chiếu vuông góc của điểm M lên mặt phẳng (P).
Vì \(SA \bot \left( {ABCD} \right),AD \subset \left( {ABCD} \right) \Rightarrow SA \bot AD\)
Vì ABCD là hình chữ nhật nên \(AB \bot AD\).
Mà SA và AB cắt nhau tại A và nằm trong mặt phẳng (SAB). Do đó, \(AD \bot \left( {SAB} \right)\).
Do đó, A là hình chiếu vuông góc của điểm D trên mặt phẳng (SAB).
Đáp án B.
Đáp án : B