Cho hình chóp S.ABCD có đáy hình bình hành. Trên cạnh SA lấy điểm M sao cho MA = 2MS. Mặt phẳng (CDM) cắt SB tại N. Biết rằng AB = 3 cm, tính tổng MN + CD.
Đáp án:
Đáp án:
- Định lý Thales.
- Quy tắc tìm giao tuyến của hai mặt phẳng chứa hai đường thẳng song song.
Ta có: {M∈(CDM)M∈AB⊂(SAB)AB//CDAB⊂(SAB),CD⊂(CDM) nên giao tuyến của (CDM) và (SAB) là đường thẳng d song song với AB, CD và đi qua M.
Giả sử d cắt SA tại N thì đường thẳng MN là giao tuyến của (CDM), (SAB) và MN//AB, suy ra SMSA=SNSB=13.
Từ đó, dễ dàng chứng minh ΔSMNᔕΔSAB, suy ra MNAB=13, tức MN=13AB=13.3=1 (cm).
Vì ABCD là hình bình hành nên AB = CD = 3 (cm).
Vậy MN + CD = 1 + 3 = 4 (cm).