Đề bài
Cho hình chóp tam giác đều S.ABC có các mặt bên là các tam giác cân diện tích \(10c{m^2}\), diện tích mặt đáy là \(20c{m^2}\). Tính diện tích toàn phần của hình chóp đó.
-
A.
\(50c{m^2}\)
-
B.
\(20c{m^2}\)
-
C.
\(40c{m^2}\)
-
D.
\(30c{m^2}\).
Phương pháp giải
Dựa vào công thức tính diện tích toàn phần của hình chóp tam giác đều: \({S_{tp}} = {S_{xq}} + {S_{day}}\)
Diện tích toàn phần của hình chóp tam giác đều bằng tổng diện tích xung quanh và diện tích đáy. Vậy diện tích toàn phần của hình chóp S.ABC là \({S_{tp}} = {S_{xq}} + {S_{day}} = 3.10 + 20 = 50c{m^2}\)
Đáp án : A