Cho hình chóp tam giác đều S. ABC có chu vi đáy bằng 9cm, — Không quảng cáo

Cho hình chóp tam giác đều S ABC có chu vi đáy bằng 9cm, chiều cao mặt đáy bằng \(\frac{{3\sqrt 3 }}{2}cm\), chiều cao hình chóp bằng \(\frac{3}{2}\)độ dài cạnh


Đề bài

Cho hình chóp tam giác đều S.ABC có chu vi đáy bằng 9cm, chiều cao mặt đáy bằng \(\frac{{3\sqrt 3 }}{2}cm\), chiều cao hình chóp bằng \(\frac{3}{2}\)độ dài cạnh đáy. Thể tích V của khối chóp S.ABC.

  • A.
    \(\frac{{81\sqrt 3 }}{4}c{m^3}\).
  • B.
    \(\frac{{27\sqrt 3 }}{8}c{m^3}\).
  • C.
    \(\frac{{81\sqrt 3 }}{8}c{m^3}\).
  • D.
    \(\frac{{27\sqrt 3 }}{4}c{m^3}\).
Phương pháp giải

Sử dụng kiến thức về hình chóp đều, chu vi tam giác để tính.

B1: Tính độ dài cạnh đáy dựa vào chu vi.

B2: Tính chiều cao hình chóp dựa vào điều kiện đề bài.

B3: Tính diện tích mặt đáy.

B4: Tính thể tích hình chóp theo công thức.

Tam giác ABC đều nên \(AB = BC = CA\)

Vì chu vi tam giác ABC bằng 9cm nên

\(AB + BC + CA = 9\)

\(\begin{array}{l} \Rightarrow 3.BC = 9\\ \Rightarrow BC = 3(cm)\end{array}\)

Gọi H là trọng tâm tam giác ABC, M là trung điểm BC.

Khi đó SH là chiều cao của hình chóp \( \Rightarrow SH = \frac{3}{2}.BC = \frac{3}{2}.3 = \frac{9}{2}(cm)\)

AM là trung tuyến của tam giác đều ABC nên AM đồng thời là đường cao của đáy\( \Rightarrow AM = \frac{{3\sqrt 3 }}{2}(cm)\)

\({S_{ABC}} = \frac{1}{2}.BC.AM = \frac{1}{2}.3.\frac{{3\sqrt 3 }}{2} = \frac{{9\sqrt 3 }}{4}(c{m^2})\)

\({V_{ABC}} = \frac{1}{3}.{S_{ABC}}.SH = \frac{1}{3}.\frac{{9\sqrt 3 }}{4}.\frac{9}{2} = \frac{{27\sqrt 3 }}{8}(c{m^3})\)

Đáp án : B