Cho hình dưới đây. Biết AB // DE. Chọn hệ thức sai trong các câu sau:
-
A.
\(AB.EC = AC.DC\).
-
B.
\(AB.DE = BC.DC\).
-
C.
\(AC.DE = BC.EC\).
-
D.
\(AB.AC = DE.DC\).
Dựa vào AB // DE suy ra \(\widehat {ABC} = \widehat {EDC}\).
Chứng minh $\Delta ABC\backsim \Delta CDE\left( g.g \right)$ suy ra tỉ số giữa các cặp cạnh tương ứng.
Vì AB // DE nên \(\widehat {ABC} = \widehat {EDC}\) (hai góc đồng vị)
Xẻ \(\Delta ABC\) và \(\Delta CDE\) có:
\(\widehat A = \widehat C\left( { = {{90}^0}} \right)\)
\(\widehat {ABC} = \widehat {EDC}\) (cmt)
Suy ra $\Delta ABC\backsim \Delta CDE\left( g.g \right)$. Từ đó ta được:
\(\frac{{AB}}{{AC}} = \frac{{CD}}{{CE}}\) suy ra \(AB.CE = AC.CD\). (A đúng)
\(\frac{{AB}}{{BC}} = \frac{{CD}}{{DE}}\) suy ra \(AB.DE = BC.CD\) (B đúng)
\(\frac{{AC}}{{BC}} = \frac{{CE}}{{DE}}\) suy ra \(AC.DE = CE.BC\) (C đúng)
Vậy D sai (vì không có tỉ lệ nào suy ra \(AB.AC = DE.DC\)).
Đáp án D.
Đáp án : D