Cho hình hộp chữ nhật \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có \(AB = a\), \(BC = 2a\), \(A{A_1} = 3a\).
a) \(\left( {\overrightarrow {A{B_1}} ;\overrightarrow {{C_1}D} } \right) = {45^o}\)
b) \(\overrightarrow {{A_1}B} .\overrightarrow {{D_1}D} = 9{a^2}\)
c) \(\overrightarrow {AC} .\overrightarrow {AD} = \overrightarrow {{C_1}{A_1}} .\overrightarrow {{C_1}{B_1}} \)
d) \(\overrightarrow {{A_1}{D_1}} .\overrightarrow {{C_1}C} = 0\)
a) \(\left( {\overrightarrow {A{B_1}} ;\overrightarrow {{C_1}D} } \right) = {45^o}\)
b) \(\overrightarrow {{A_1}B} .\overrightarrow {{D_1}D} = 9{a^2}\)
c) \(\overrightarrow {AC} .\overrightarrow {AD} = \overrightarrow {{C_1}{A_1}} .\overrightarrow {{C_1}{B_1}} \)
d) \(\overrightarrow {{A_1}{D_1}} .\overrightarrow {{C_1}C} = 0\)
Sử dụng lý thuyết các vecto bằng nhau, các vecto đối nhau, góc giữa hai vecto.
a) Sai. Vì hai vecto trên ngược hướng nên \(\left( {\overrightarrow {A{B_1}} ;\overrightarrow {{C_1}D} } \right) = {180^o}\) .
b) Đúng. \(\overrightarrow {{A_1}B} .\overrightarrow {{D_1}D} = \overrightarrow {{A_1}B} .\overrightarrow {{A_1}A} = \left| {\overrightarrow {{A_1}B} } \right|.\left| {\overrightarrow {{A_1}A} } \right|\cos \left( {\overrightarrow {{A_1}B} ,\overrightarrow {{A_1}A} } \right) = a\sqrt {10} .3a.\frac{{3a}}{{a\sqrt {10} }} = 9{a^2}\) .
c) Đúng. \(\overrightarrow {AC} .\overrightarrow {AD} = - \overrightarrow {{C_1}{A_1}} .\left( { - \overrightarrow {{C_1}{B_1}} } \right) = \overrightarrow {{C_1}{A_1}} .\overrightarrow {{C_1}{B_1}} \) .
d) Đúng. \(\overrightarrow {{A_1}{D_1}} .\overrightarrow {{C_1}C} = \overrightarrow {{A_1}{D_1}} .\overrightarrow {{D_1}D} = 0\) (vì \(\overrightarrow {{A_1}{D_1}} \) và \(\overrightarrow {{D_1}D} \) vuông góc với nhau).