Cho hình sau với tam giác ABC có AB = AC = 9;cm và tia phân — Không quảng cáo

Cho hình sau với tam giác \({\rm{ABC}}\) có \(AB = AC = 9{\rm{\ cm}}\) và tia phân giác của góc \(B\) cắt đường cao \({\rm{AH}}\) ở \(I\) Biết \(\frac{{AI}}{{IH}} =


Đề bài

Cho hình sau với tam giác \({\rm{ABC}}\) có \(AB = AC = 9{\rm{\;cm}}\) và tia phân giác của góc \(B\) cắt đường cao \({\rm{AH}}\) ở \(I\) Biết \(\frac{{AI}}{{IH}} = \frac{3}{2}\). Tính chu vi tam giác \({\rm{ABC}}\).

  • A.
    \(35{\rm{\;cm}}\)
  • B.
    \(29{\rm{\;cm}}\)
  • C.
    \(30{\rm{\;cm}}\)
  • D.
    \(32{\rm{\;cm}}\)
Phương pháp giải

Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy.

Từ đó tính được cạnh \({\rm{BH}}\).

Áp dụng tính chất đường cao trong tam giác cân cũng là đường trung tuyến, tính được cạnh \({\rm{BC}}\).

Chu vi tam giác bằng tổng độ dài ba cạnh của tam giác.

\(\Delta ABH\) có \(BI\) là tia phân giác của góc B suy ra \(\frac{{BA}}{{BH}} = \frac{{IA}}{{IH}} = \frac{3}{2}\)

\(BH = \frac{2}{3}BA = \frac{2}{3} \cdot 9 = 6\left( {{\rm{\;cm}}} \right)\).

Do \(\Delta ABC\) cân ở \(A\) nên đường cao \(AH\) cũng là đường trung tuyến.

Do đó, \(HB = HC\) suy ra \(BC = 2BH = 2.6 = 12\left( {{\rm{\;cm}}} \right)\).

Vậy chu vi \(\Delta ABC\) là: \(AB + AC + BC = 9 + 9 + 12 = 30\left( {{\rm{\;cm}}} \right)\).

Đáp án C.

Đáp án : C