Cho hình thang \(ABCD\,\,\left( {AB\,{\rm{//}}\,CD} \right)\), \(\widehat {ADB} = \widehat {BCD}\), \(AB = 2\,{\rm{cm}}\), \(BD = \sqrt 5 \,{\rm{cm}}\). Độ dài đoạn thẳng \(CD\) là
-
A.
\(2\sqrt 5 \,{\rm{cm}}\).
-
B.
\(\sqrt 5 - 2\,{\rm{cm}}\).
-
C.
\(\frac{{\sqrt 5 }}{2}\,{\rm{cm}}\).
-
D.
\(2,5\,{\rm{cm}}\).
Vì \(AB\,{\rm{//}}\,CD \Rightarrow \widehat {ABD} = \widehat {BDC}\) (cặp góc so le trong).
Xét \(\Delta \,ADB\) và \(\Delta \,BCD\) có:
\(\widehat {ABD} = \widehat {BDC}\) (chứng minh trên); \(\widehat {ADB} = \widehat {BCD}\) (gt)
Nên \(\Delta \,ADB\, \backsim \Delta BCD\) (g – g ).
\( \Rightarrow \frac{{AB}}{{BD}} = \frac{{DB}}{{CD}} \Leftrightarrow \frac{2}{{\sqrt 5 }} = \frac{{\sqrt 5 }}{{CD}} \Leftrightarrow CD = \frac{{\sqrt 5 .\sqrt 5 }}{2} = \frac{5}{2} = 2,5\,\,\left( {{\rm{cm}}} \right)\).
Đáp án : D