Cho hình thang ABCD vuông tại A và D. Biết \(CD = 2AB = 2AD = 2a\) và \(BC = a\sqrt 2 .\) Gọi I là trung điểm của BC, H là chân đường vuông góc kẻ từ D xuống AC. Khi đó:
-
A.
\(\widehat {HDI} = {45^0}\)
-
B.
\(\widehat {HDI} = {40^0}\)
-
C.
\(\widehat {HDI} = {50^0}\)
-
D.
\(\widehat {HDI} = {55^0}\)
Áp dụng định lý Pythagore vào tam giác ADB vuông tại A có: \(B{D^2} = A{D^2} + A{B^2} = {a^2} + {a^2} = 2{a^2} \Rightarrow BD = a\sqrt 2 \)
Tam giác ABD vuông cân tại A nên \(\widehat {ADB} = {45^0}\)
Ta có: \(B{D^2} + B{C^2} = 2{a^2} + 2{a^2} = 4{a^2} = C{D^2}\) nên tam giác BDC vuông tại B, do đó, \(\widehat {DBC} = {90^0}\)
Xét tam giác ADC và tam giác IBD có:
\(\widehat {ADC} = \widehat {IBD} = {90^0},\frac{{AD}}{{IB}} = \frac{{DC}}{{BD}}\)
Do đó, \(\Delta ADC \backsim \Delta IBD\)
Suy ra, \(\widehat {ACD} = \widehat {BDI}\)
Mà \(\widehat {ADH} = \widehat {ACD}\) (cùng phụ với góc HDC)
Do đó, \(\widehat {ADH} = \widehat {BDI}\)
Mà \(\widehat {ADH} + \widehat {BDH} = {45^0} \Rightarrow \widehat {BDI} + \widehat {BDH} = {45^0}\) hay \(\widehat {HDI} = {45^0}\)
Đáp án : A