Cho hình vuông ABCD có cạnh bằng 4cm. Người ta dựng hình — Không quảng cáo

Cho hình vuông ABCD có cạnh bằng 4cm Người ta dựng hình vuông \({A_1}{B_1}{C_1}{D_1}\) có cạnh bằng \(\frac{1}{2}\) đường chéo của hình vuông ABCD dựng hình vuông \({A_2}{B_2}{C_2}{D_2}\) có cạnh


Đề bài

Cho hình vuông ABCD có cạnh bằng 4cm. Người ta dựng hình vuông \({A_1}{B_1}{C_1}{D_1}\) có cạnh bằng \(\frac{1}{2}\) đường chéo của hình vuông ABCD; dựng hình vuông \({A_2}{B_2}{C_2}{D_2}\) có cạnh bằng \(\frac{1}{2}\) đường chéo của hình vuông \({A_1}{B_1}{C_1}{D_1}\) và cứ tiếp tục như vậy. Giả sử cách dựng trên có thể tiến ra vô hạn. Tổng diện tích tất cả các hình vuông ABCD, \({A_1}{B_1}{C_1}{D_1}\), \({A_2}{B_2}{C_2}{D_2}\), … bằng bao nhiêu?

Phương pháp giải

Sử dụng kiến thức về tổng cấp số nhân lùi vô hạn: Cấp số nhân lùi vô hạn \(\left( {{u_n}} \right)\) với công bội q, số hạng đầu \({u_1}\) thì có tổng là \(S = \frac{{{u_1}}}{{1 - q}}\)

Ta có: \({S_1} = {S_{ABCD}} = {4^2};{S_2} = {S_{{A_1}{B_1}{C_1}{D_1}}} = {\left( {\frac{{4\sqrt 2 }}{2}} \right)^2} = \frac{{{4^2}}}{2};{S_3} = {S_{{A_2}{B_2}{C_2}{D_2}}} = {\left( {\frac{{4\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2}} \right)^2} = \frac{{{4^2}}}{{{2^2}}}\);…

\({S_n} = {S_{{A_n}{B_n}{C_n}{D_n}}} = {4^2}.\frac{1}{{{2^{n - 1}}}}\);…

Như vậy, các số \({S_1};{S_2};...;{S_n};...\) lập thành một cấp số nhân lùi vô hạn có \({S_1} = {4^2},q = \frac{1}{2}\)

Do đó: \(S = {S_1} + {S_2} + ... + {S_n} + ... = \frac{{{S_1}}}{{1 - q}} = \frac{{{4^2}}}{{1 - \frac{1}{2}}} = {2.4^2} = 32\left( {c{m^2}} \right)\)