Cho khối chóp đều S cdot ABCD có cạnh đáy là a, các mặt bên — Không quảng cáo

Đề bài Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây Cho khối chóp đều \(S \cdot ABCD\) có cạnh đáy là \(a\), các


Đề bài
Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây.

Cho khối chóp đều \(S \cdot ABCD\) có cạnh đáy là \(a\), các mặt bên tạo với đáy một góc \(60^\circ \), O là tâm đáy. Khẳng định sau đây đúng hay sai?

a) Thể tích hình chóp là: \(\frac{{{a^3}\sqrt 3 }}{2}\)

Đúng
Sai

b) Độ dài cạnh bên của hình chóp là: \(\frac{{a\sqrt 5 }}{2}\)

Đúng
Sai

c) Khoảng cách \(d\left( {O;\left( {SCB} \right)} \right)\) bằng: \(\frac{{a\sqrt 3 }}{4}\)

Đúng
Sai

d) Khoảng cách \(d\left( {AD;SC} \right) = \frac{{a\sqrt 3 }}{3}\)

Đúng
Sai
Đáp án

a) Thể tích hình chóp là: \(\frac{{{a^3}\sqrt 3 }}{2}\)

Đúng
Sai

b) Độ dài cạnh bên của hình chóp là: \(\frac{{a\sqrt 5 }}{2}\)

Đúng
Sai

c) Khoảng cách \(d\left( {O;\left( {SCB} \right)} \right)\) bằng: \(\frac{{a\sqrt 3 }}{4}\)

Đúng
Sai

d) Khoảng cách \(d\left( {AD;SC} \right) = \frac{{a\sqrt 3 }}{3}\)

Đúng
Sai
Phương pháp giải

a) Thể tích của khối chóp có diện tích đáy \(B\), chiều cao \(h\) là \(V = \frac{1}{3}h.B\)

b) Áp dụng định lí Pytago

c) Áp dụng hệ thức lượng trong tam giác vuông

d) \(d\left( {AD;SC} \right) = 2d\left( {O;\left( {SCB} \right)} \right)\)

a) Sai.

Gọi \(M\) là trung điểm BC, Góc giữa mặt bên \((SBC)\) và mặt phẳng \((ABCD)\) là góc \(\widehat {SMO} = 60^\circ \).

Xét \(\Delta SOM\) có \(OM = \frac{a}{2},SMO = 60^\circ \) thì

\(SO = OM \cdot \tan \widehat {SMO} = \frac{a}{2} \cdot \sqrt 3  = \frac{{a\sqrt 3 }}{2}\)

Nên \({V_{S.ABCD}} = \frac{1}{3}SO{S_{AGCD}} = \frac{{{a^3}\sqrt 3 }}{6}(dvtt)\).

b) Đúng.

Đúng. Xét \(\Delta SOB\) vuông tại O ta có:

\(SB = \sqrt {O{M^2} + O{B^2}}  = \sqrt {\frac{{3{a^2}}}{4} + \frac{{2{a^2}}}{4}}  = \frac{{\sqrt 5 a}}{2}\).

c) Đúng.

Kẻ OH vuông góc với SM khi đó \(d\left( {O;\left( {SCB} \right)} \right) = OH\)

Xét \(\Delta SOM\)vuông tại O có: \(\frac{1}{{O{H^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{M^2}}} = \frac{{16}}{{3{a^2}}} \Rightarrow OH = \frac{{a\sqrt 3 }}{4}\)

d) Sai

Vì \(AD//CB\) mà \(CB \subset \left( {SBC} \right)\) nên

\(d\left( {AD;SC} \right) = d\left( {AD;\left( {SCB} \right)} \right) = d\left( {A;\left( {SCB} \right)} \right) = 2d\left( {O;\left( {SCB} \right)} \right) = \frac{{a\sqrt 3 }}{2}\)