Đề bài
Cho khối chóp S.ABC có đáy là tam giác đều cạnh \(a\) và thể tích khối chóp \(\frac{{{a^3}}}{4}\). Tính khoảng cách từ \(S\) đến mặt phẳng \(\left( {ABC} \right)\).
-
A.
\(2a\sqrt 3 \).
-
B.
\(a\sqrt 3 \).
-
C.
\(a\).
-
D.
3a.
Phương pháp giải
Khoảng cách từ \(S\) đến mặt phẳng \(\left( {ABC} \right)\) là \(d = \frac{{3V}}{S}\)
Diện tích tam giác ABC là \(\frac{{{a^2}\sqrt 3 }}{4}\)
Khoảng cách từ \(S\) đến mặt phẳng \(\left( {ABC} \right)\) là \(d = \frac{{3V}}{{{S_{ABC}}}} = \frac{{3.\frac{{{a^3}}}{4}}}{{\frac{{{a^2}\sqrt 3 }}{4}}} = a\sqrt 3 \)
Đáp án B.
Đáp án : B