Cho khối chóp tam giác đều, nếu tăng cạnh đáy lên hai lần — Không quảng cáo

Cho khối chóp tam giác đều, nếu tăng cạnh đáy lên hai lần và giảm chiều cao đi bốn lần thì thể tích của khối chóp sẽ


Đề bài

Cho khối chóp tam giác đều, nếu tăng cạnh đáy lên hai lần và giảm chiều cao đi bốn lần thì thể tích của khối chóp sẽ:

  • A.
    Giảm đi 2 lần
  • B.
    Tăng lên 2 lần
  • C.
    Giảm đi 4 lần.
  • D.
    Không thay đổi.
Phương pháp giải

Dựa vào công thức tính thể tích khối chóp

Nếu cạnh đáy tăng lên 2 lần thì diện tích đáy tăng 4 lần. Vì chiều cao giảm đi 4 lần nên thể tích khối chóp không thay đổi.

Ví dụ: Hình chóp tam giác đều S.ABC có cạnh đáy là a, chiều cao là h.

Vì tam giác ABC đều nên chiều cao của tam giác ABC là:

\(\sqrt{a^2 - \left(\frac{a}{2}\right)^2} = \frac{a\sqrt3}{2}\)

Suy ra \(V_{S.ABC} = \frac{1}{3}.h.\frac{1}{2}.a.\frac{a\sqrt3}{2} = \frac{\sqrt3a^2h}{12}\)

Sau khi tăng cạnh đáy lên hai lần và giảm chiều cao đi bốn lần ta được hình chóp mới S.A'B'C'

Cạnh đáy tăng lên 2 lần thì đáy mới là a' = 2a, khi đó chiều cao của tam giác A'B'C' là:

\(\sqrt{(2a)^2 - \left(\frac{2a}{2}\right)^2} = a\sqrt3\)

Vì chiều cao h giảm đi 4 lần nên chiều cao mới là \(h' = \frac{h}{4}\)

\(V_{S.A'B'C'} = \frac{1}{3}.h'.S_{A'B'C'}\)

\(= \frac{1}{3}.\frac{h}{4}.\frac{1}{2}.(2a).a\sqrt3\)

\(= \frac{\sqrt3a^2h}{12}\)

Vậy nếu tăng cạnh đáy lên hai lần và giảm chiều cao đi bốn lần thì thể tích của khối chóp sẽ không thay đổi

Đáp án : D