Cho \(P = \dfrac{{2{n^3} - 3{n^2} + 3n - 1}}{{n - 1}}\). Có bao nhiêu giá trị \(n \in Z\) để \(P \in Z\).
-
A.
0
-
B.
1
-
C.
2
-
D.
Vô số
- Đặt phép chia.
- Để thỏa mãn điều kiện của đề bài thì số dư cuối cùng phải chia hết cho số chia nên số chia là ước của số dư cuối cùng.
- Lập bảng thử chọn để chọn ra giá trị của \(n\)thỏa mãn.
Vậy \(2{n^3} - 3{n^2} + 3n - 1 = \left( {2{n^2} - n + 2} \right)\left( {n - 1} \right) + 1\)
Để \(2{n^3} - 3{n^2} + 3n - 1\) chia hết cho \(n - 1\) thì \(1\) chia hết cho \(n - 1\).
\( \Rightarrow \left( {n - 1} \right) \in \left\{ {1; - 1} \right\}\)
Do đó n \( \in \) {0;2} để \(P \in Z\)
Vậy có 2 giá trị n thỏa mãn.
Đáp án : C