Cho phương trình 4^x - 10. 2^x + 16 căn log 3x^5 - M = 0 m — Không quảng cáo

Cho phương trình \(\left( {{4^x} - {{10 2}^x} + 16} \right)\sqrt {{{\log }_3}{x^5} - M} = 0\) (m là tham số) Tìm các giá trị nguyên dương của m để


Đề bài

Cho phương trình \(\left( {{4^x} - {{10.2}^x} + 16} \right)\sqrt {{{\log }_3}{x^5} - m}  = 0\) (m là tham số). Tìm các giá trị nguyên dương của m để phương trình trên có đúng hai nghiệm phân biệt.

Phương pháp giải

+ Nếu \(a > 0,a \ne 1\) thì \({\log _a}u\left( x \right) = {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) = v\left( x \right)\end{array} \right.\) (có thể thay \(u\left( x \right) > 0\) bằng \(v\left( x \right) > 0\))

+ Với \(a > 0,a \ne 1\) ta có: \({\log _a}u\left( x \right) = b \Leftrightarrow u\left( x \right) = {a^b}\).

Điều kiện: \({\log _3}{x^5} \ge m > 0,x > 0\)

\(\left( {{4^x} - {{10.2}^x} + 16} \right)\sqrt {{{\log }_3}{x^5} - m}  = 0 \Leftrightarrow \left[ \begin{array}{l}{4^x} - {10.2^x} + 16 = 0\;\left( 1 \right)\\{\log _3}{x^5} - m = 0\;\;\left( 2 \right)\end{array} \right.\)

Giải phương trình (1): \({\left( {{2^x}} \right)^2} - {10.2^x} + 16 = 0 \Leftrightarrow \left( {{2^x} - 2} \right)\left( {{2^x} - 8} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{2^x} - 2 = 0\\{2^x} - 8 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\) (thỏa mãn)

Vì \(m \in \mathbb{N}*\) nên phương trình (2) luôn có nghiệm \(x = \sqrt[5]{{{3^m}}}\). Để phương trình có đúng hai nghiệm phân biệt thì:

+ Trường hợp 1: \(x = \sqrt[5]{{{3^m}}} = 1 \Rightarrow m = 0\) (loại)

+ Trường hợp 2: \(x = \sqrt[5]{{{3^m}}} = 2 \Rightarrow {3^{\frac{m}{5}}} = 2 \Rightarrow m = 5{\log _3}2\) (loại)

+ Trường hợp 3: Phương trình đã cho chỉ nhận nghiệm \(x = 3\) của phương trình (1) làm nghiệm, một nghiệm từ (2):

Khi đó, \(\left\{ \begin{array}{l}m = 5{\log _3}x,x < 3\\5{\log _3}1 < m\end{array} \right. \Rightarrow \left\{ \begin{array}{l}0 < m < 5\\x = \sqrt[5]{{{3^m}}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}m \in \left\{ {1;2;3;4} \right\}\\x = \sqrt[5]{{{3^m}}}\end{array} \right.\)

Suy ra, với \(m \in \left\{ {1;2;3;4} \right\}\) thì phương trình đã cho có hai nghiệm \(x = \sqrt[5]{{{3^m}}}\), \(x = 3\).

Vậy \(m \in \left\{ {1;2;3;4} \right\}\) phương trình đã cho có đúng hai nghiệm phân biệt.