Cho phương trình m^2 - 3m + 2x = m - 2, với m là tham số — Không quảng cáo

Cho phương trình \(\left( {{m^2} - 3m + 2} \right)x = m - 2,\) với m là tham số Giá trị của m để phương trình có vô số nghiệm


Đề bài

Cho phương trình \(\left( {{m^2} - 3m + 2} \right)x = m - 2,\) với m là tham số. Giá trị của m để phương trình có vô số nghiệm là:

  • A.
    \(m = 1\)
  • B.
    \(m = 2\)
  • C.
    \(m \in \left\{ {1;2} \right\}\)
  • D.
    \(m = 0\)
Phương pháp giải
Sử dụng nghiệm của phương trình bậc nhất một ẩn.

\(\left( {{m^2} - 3m + 2} \right)x = m - 2\left( * \right)\)

Xét \({m^2} - 3m + 2 = 0\)

\({m^2} - m - 2m + 2 = 0\)

\(\left( {m - 1} \right)\left( {m - 2} \right) = 0\)

Từ đó tính được \(m = 1;m = 2\)

Với \(m = 1\) thay vào (*) ta có: \(0.x =  - 1\) (vô lí) nên phương trình (*) vô nghiệm.

Với \(m = 2\) thay vào (*) ta có: \(0x = 0\) (luôn đúng) nên phương trình (*) có vô số nghiệm với mọi số thực x.

Đáp án : B