Cho sin alpha = 2/3 với pi /2 — Không quảng cáo

Cho \(\sin \alpha = \frac{2}{3}\) với \(\frac{\pi }{2}


Đề bài

Cho \(\sin \alpha  = \frac{2}{3}\) với \(\frac{\pi }{2} < \alpha  < \pi \). Giá trị của \(\cos \alpha \) là?

  • A.

    \(\cos \alpha  = \frac{2}{3}\)

  • B.

    \(\cos \alpha  =  - \frac{{\sqrt 5 }}{3}\)

  • C.

    \(\cos \alpha  = \frac{{\sqrt 5 }}{3}\)

  • D.

    \(\cos \alpha  = \frac{3}{2}\)

Phương pháp giải

Áp dụng công thức \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) và sử dụng đường tròn lượng giác để xét dấu.

Ta có: \({\cos ^2}\alpha  = 1 - {\sin ^2}\alpha  = 1 - {\left( {\frac{3}{2}} \right)^2} = \frac{5}{9}\), suy ra \(\cos \alpha  =  \pm \frac{{\sqrt 5 }}{3}\).

Vì \(\frac{\pi }{2} < \alpha  < \pi \) nên điểm cuối của cung \(\alpha \) thuộc cung phần tư thứ II, do đó \(\cos \alpha  < 0\).

Vậy \(\cos \alpha  =  - \frac{{\sqrt 5 }}{3}\).

Đáp án : B