Cho tam giác A'B'C' và tam giác ABC có hat A = hat A'. Để — Không quảng cáo

Cho \(\Delta {A'}{B'}{C'}\) và \(\Delta ABC\) có \(\hat A = {\hat A'}\) Để \(\Delta {A'}{B}{C'} \backsim \Delta ABC\) cần thêm điều kiện là


Đề bài

Cho \(\Delta {A'}{B'}{C'}\) và \(\Delta ABC\) có \(\hat A = {\hat A'}\) . Để \(\Delta {A'}{B}{C'} \backsim \Delta ABC\) cần thêm điều kiện là:

  • A.

    \(\frac{{{A'}{B'}}}{{AB}} = \frac{{{A'}{C'}}}{{AC}}.\)

  • B.

    \(\frac{{{A'}{B'}}}{{AB}} = \frac{{{B'}{C'}}}{{BC}}.\)

  • C.

    \(\frac{{{A'}{B'}}}{{AB}} = \frac{{BC}}{{{B'}{C'}}}.\)

  • D.

    \(\frac{{{B'}{C'}}}{{BC}} = \frac{{AC}}{{{A'}{C'}}}.\)

Phương pháp giải
Áp dụng trường hợp đồng dạng thứ hai của hai tam giác: Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đó đồng dạng với nhau.

Ta có: \(\widehat A = \widehat {{A'}}\) và \(\frac{{{A'}{B'}}}{{AB}} = \frac{{{A'}{C'}}}{{AC}}\) thì \(\Delta {A'}{B'}{C'} \backsim \Delta ABC\) (c-g-c)

Đáp án : A