Cho tam giác ABC cân tại A. Từ A kẻ AH vuông góc với BC tại — Không quảng cáo

Cho tam giác ABC cân tại A Từ A kẻ AH vuông góc với BC tại H, trên đoạn thẳng AH lấy điểm M tùy ý (M khác A và


Đề bài

Cho tam giác ABC cân tại A. Từ A kẻ AH vuông góc với BC tại H, trên đoạn thẳng AH lấy điểm M tùy ý (M khác A và H). Chứng minh rằng:

a) BH = CH.

b) BA > BM.

Phương pháp giải

a) Chứng minh \(\Delta AHB = \Delta AHC\) nên \(BH = CH\).

b) Sử dụng quan hệ giữa đường vuông góc và đường xiên để chứng minh.

a) Xét \(\Delta AHB\) và \(\Delta AHC\) có:

\(\widehat {AHB} = \widehat {AHC} = {90^0}\)

\(AB = AC\) (\(\Delta ABC\) cân tại A)

AH chung

Suy ra \(\Delta AHB = \Delta AHC\) (cạnh huyền – cạnh góc vuông)

Suy ra \(BH = CH\) (hai cạnh tương ứng) (đpcm)

b) Do M nằm giữa A và H nên HA > HM.

Ta có BH là đường vuông góc, BA và BM là các đường xiên kẻ từ B đến đường thẳng AH nên HM là hình chiếu của BM, HA là hình chiếu của AB xuống AH.

Vì HA > HM nên BA < BM.

Vậy BA > BM (đpcm).