Cho tam giác ABC cân tại A và tam giác A’B’C’ cân tại A’, các đường cao BH và B’H’. Biết rằng \(\frac{{CH}}{{C'H'}} = \frac{{BC}}{{B'C'}}\). Biết rằng \(\widehat {BAC} = 4\widehat {A'C'B'}.\) Chọn đáp án đúng.
-
A.
\(\widehat {BAC} = {90^0}\)
-
B.
\(\widehat {BAC} = {100^0}\)
-
C.
\(\widehat {BAC} = {120^0}\)
-
D.
\(\widehat {BAC} = {110^0}\)
Tam giác BHC và tam giác B’H’C’ có: \(\widehat {BHC} = \widehat {B'H'C'} = {90^0},\frac{{CH}}{{C'H'}} = \frac{{BC}}{{B'C'}}\)
Do đó, \(\Delta BHC \backsim \Delta B'H'C'\)
Suy ra: \(\widehat C = \widehat {C'}\), mà tam giác ABC cân tại A, tam giác A’B’C’ cân tại A’ nên \(\widehat B = \widehat {B'} = \widehat C = \widehat {C'}\)
Do đó, \(\widehat {BAC} = 4\widehat {ACB} = 4\widehat {ABC}\)
Lại có: \(\widehat {BAC} + \widehat {ACB} + \widehat {ABC} = {180^0} \Rightarrow 6\widehat {ACB} = {180^0} \Rightarrow \widehat {ACB} = {30^0} \Rightarrow \widehat {BAC} = {120^0}\)
Đáp án : C