Cho tam giác ABC cân tại A và tam giác A’B’C’ cân tại A’, — Không quảng cáo

Cho tam giác ABC cân tại A và tam giác A’B’C’ cân tại A’, các đường cao BH và B’H’ Biết rằng \(\frac{{CH}}{{C'H'}} = \frac{{BC}}{{B'C'}}\) Biết rằng \(\widehat {BAC} =


Đề bài

Cho tam giác ABC cân tại A và tam giác A’B’C’ cân tại A’, các đường cao BH và B’H’. Biết rằng \(\frac{{CH}}{{C'H'}} = \frac{{BC}}{{B'C'}}\). Biết rằng \(\widehat {BAC} = 4\widehat {A'C'B'}.\) Chọn đáp án đúng.

  • A.
    \(\widehat {BAC} = {90^0}\)
  • B.
    \(\widehat {BAC} = {100^0}\)
  • C.
    \(\widehat {BAC} = {120^0}\)
  • D.
    \(\widehat {BAC} = {110^0}\)
Phương pháp giải
Sử dụng kiến thức trường hợp đồng dạng thứ nhất của tam giác vuông: Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và một cạnh góc vuông của tam giác kia thì hai tam giác vuông đó đồng dạng với nhau.

Tam giác BHC và tam giác B’H’C’ có: \(\widehat {BHC} = \widehat {B'H'C'} = {90^0},\frac{{CH}}{{C'H'}} = \frac{{BC}}{{B'C'}}\)

Do đó, \(\Delta BHC \backsim \Delta B'H'C'\)

Suy ra: \(\widehat C = \widehat {C'}\), mà tam giác ABC cân tại A, tam giác A’B’C’ cân tại A’ nên \(\widehat B = \widehat {B'} = \widehat C = \widehat {C'}\)

Do đó, \(\widehat {BAC} = 4\widehat {ACB} = 4\widehat {ABC}\)

Lại có: \(\widehat {BAC} + \widehat {ACB} + \widehat {ABC} = {180^0} \Rightarrow 6\widehat {ACB} = {180^0} \Rightarrow \widehat {ACB} = {30^0} \Rightarrow \widehat {BAC} = {120^0}\)

Đáp án : C