Cho tam giác ABC có AB = 24cm; AC = 36cm. Kẻ BD \(\left( {A \in AC} \right)\) góc với tia phân giác của góc A tại H. Gọi M là trung điểm của BC. Độ dài đoạn thẳng HM là:
-
A.
6cm
-
B.
12cm
-
C.
3cm
-
D.
8cm
Vì AH là tia phân giác của goác BAC, AH vuông góc BD nên tam giác cân tại A.
\( \Rightarrow AB = A{\rm{D}} = 24cm\)
Do tam giác ABD cân tại A nên AH là đường phân giác đồng thời là đường trung tuyến của tam giác ABD
Suy ra H là trung điểm của BD
Ta có: DC = AC – AD = 36 – 24 = 12cm
Xét tam giác BDC, ta có H là trung điểm của BD , M là trung điểm của BC nên HM là đường trung bình của tam giác BDC
\( \Rightarrow HM = \frac{1}{2}DC = \frac{1}{2}.12 = 6cm\)
Đáp án : A