Cho tam giác ABC có AB — Không quảng cáo

Cho \(\Delta ABC\) có \(AB


Đề bài

Cho \(\Delta ABC\) có \(AB < AC\) . Gọi $M$ là trung điểm của $BC.$ Trên tia đối của tia $MA$ lấy điểm $D$ sao cho $MA{\rm{ }} = {\rm{ }}MD$. So sánh \(\widehat {CDA}\) và \(\widehat {CAD}\) ?

  • A.

    \(\widehat {CAD} > \widehat {CDA}\)

  • B.

    \(\widehat {CAD} = \widehat {CDA}\)

  • C.

    $\widehat {CAD} < \widehat {CDA}$

  • D.

    \(\widehat {CDA} < \widehat {CAD}\)

Phương pháp giải

- Chứng minh \(\Delta ABM = \Delta DCM\).

- Chứng minh \(DC < AC\).

- Áp dụng định lý: Trong một tam giác, góc đối diện với cạnh lớn hơn là góc lớn hơn.

Vì $M$  là trung điểm của $BC$  (gt) \( \Rightarrow MB = MC\) (tính chất trung điểm).

Ta có: \(\widehat {AMB} = \widehat {DMC}\) ($2$ góc đối đỉnh).

Xét \(\Delta ABM\) và \(\Delta DCM\)có:

\(\left\{ \begin{array}{l}AM = MD\left( {gt} \right)\\\widehat {AMB} = \widehat {DMC}\left( {cmt} \right)\\BM = MC\left( {cmt} \right)\end{array} \right.\)

\( \Rightarrow \Delta ABM = \Delta DCM\left( {c - g - c} \right)\)

\( \Rightarrow AB = DC\left( 1 \right)\)  (2 cạnh tương ứng)

Lại có, \(AB < AC\left( {gt} \right)\left( 2 \right)\) . Từ \(\left( 1 \right)\) và \(\left( 2 \right) \Rightarrow DC < AC\).

Xét \(\Delta ADC\) có: \(DC < AC\left( {cmt} \right) \Rightarrow \widehat {CAD} < \widehat {CDA}\) (quan hệ giữa góc và cạnh đối diện trong tam giác)

Đáp án : C