Cho \(\Delta ABC\) có \(AB = 6{\rm{\;cm}},AC = 8{\rm{\;cm}},BC = 10{\rm{\;cm}}\). Gọi \({\rm{H}},I,{\rm{\;K}}\) lần lượt là trung điểm của \({\rm{AB}},{\rm{BC}},{\rm{AC}}\). Chu vi tứ giác \({\rm{AHIK}}\) bằng:
-
A.
\(7{\rm{\;cm}}\)
-
B.
\(14{\rm{\;cm}}\)
-
C.
\(24{\rm{\;cm}}\)
-
D.
\(12{\rm{\;cm}}\)
Định nghĩa: Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.
Tính chất: Đường trung bình của tam giác song song với cạnh thứ ba và bằng nửa cạnh đó.
Vì \({\rm{K}},{\rm{H}}\) lần lượt là trung điểm của \({\rm{AB}},{\rm{AC}}\) nên \(AK = \frac{1}{2}AC = 4{\rm{\;cm}},AH = \frac{1}{2}AB = 3{\rm{\;cm}}\)
Vì \(\Delta ABC\) có \(H,I\) lần lượt là trung điểm của \({\rm{AB}},{\rm{BC}}\)
nên \({\rm{HI}}\) là đường trung bình của tam giác \({\rm{ABC}}\) nên \(HI = \frac{1}{2}AC = 4{\rm{\;cm}}\)
Vì \(\Delta ABC\) có \({\rm{K}},{\rm{I}}\) lần lượt là trung điểm của \({\rm{AC}},{\rm{BC}}\)
nên \({\rm{KI}}\) là đường trung bình của tam giác \({\rm{ABC}}\) nên \(KI = \frac{1}{2}AB = 3{\rm{\;cm}}\)
Chu vi tứ giác AHIK là: \(KI + HI + AH + AK = 3 + 4 + 3 + 4 = 14\left( {{\rm{\;cm}}} \right)\)
Đáp án B.
Đáp án : B