Cho tam giác ABC có AB = 9cm, AC = 16cm, BC = 20cm . Hỏi góc B bằng bao nhiêu lần góc A?
-
A.
\(\hat B = \frac{{\hat A}}{3}\)
-
B.
\(\hat B = \frac{2}{3}\hat A\)
-
C.
\(\hat B = \frac{{\hat A}}{2}\)
-
D.
\(\hat B = \hat A\)
Kẻ đường phân giác AE của \(\Delta ABC\) . Theo tính chất đường phân giác, ta có:
\(\frac{{BE}}{{EC}} = \frac{{AB}}{{AC}} = \frac{9}{{16}}\) hay \(\frac{{BE}}{{AB}} = \frac{{CE}}{{AC}}\)
Nên \(\frac{{BE + EC}}{{AB+AC}} = \frac{{20}}{{9+16}}=\frac{4}{5}\)
Hay \(\frac{{CE}}{{AC}} = \frac{{CE}}{{16}} =\frac{4}{5} \Rightarrow EC = 12,8(cm)\)
Xét \(\Delta ACB\) và \(\Delta ECA\) có: \(\hat C\) là góc chung
\(\frac{{AC}}{{EC}} = \frac{{CB}}{{CA}}\) (vì \(\frac{{16}}{{12,8}} = \frac{{20}}{{16}})\)
Do đó \(\Delta ACB \backsim \Delta ECA\) (c-g-c) suy ra \(\hat B = \widehat {CAE}\) tức là \(\hat B = \frac{{\hat A}}{2}\)
Đáp án : C