Cho tam giác ABC có AB = AC. Trên các cạnh AB và AC lấy các điểm D, E sao cho \(AD = AE\). Gọi K là giao điểm của BE và CD. Chọn câu sai
-
A.
BE = CD.
-
B.
BK = KC.
-
C.
BD = CE.
-
D.
DK = KC.
Chứng minh các \(\Delta ABE = \Delta ACD\) và \(\Delta BKC\) cân để kiểm tra.
Xét tam giác ABE và ACD có:
AB = AC (gt)
\(\widehat {BAC}\) chung
AE = AD (gt)
suy ra \(\Delta ABE = \Delta ACD\left( {c.g.c} \right)\)
suy ra BE = CD (hai cạnh tương ứng nên A đúng.
và \(\widehat {ABE} = \widehat {ACD}\) (hai góc tương ứng)
Mà \(\widehat {ABC} = \widehat {ACB}\) (tam giác ABC cân tại A vì AB = AC)
Suy ra \(\widehat {KBC} = \widehat {KCB}\) nên \(\Delta BKC\) cân tại K.
Do đó BK = CK nên B đúng.
Vì AB = AC, AD = AE nên AB – AD = AC – AE hay BD = CE nên C đúng.
Ta chưa đủ điều kiện có DK = KC nên đáp án D sai.
Đáp án D.
Đáp án : D