Cho ΔABC , có AC = 18cm; AB = 9cm; BC = 15cm . Trên cạnh AC lấy điểm N sao cho AN = 3cm , trên cạnh AB lấy điểm M sao cho AM = 6cm . Tính độ dài đoạn thẳng MN:
-
A.
MN= 6cm
-
B.
MN = 5cm
-
C.
MN = 8cm
-
D.
MN = 9cm
Ta có: \frac{{AN}}{{AB}} = \frac{3}{9} = \frac{1}{3},\frac{{AM}}{{AC}} = \frac{6}{{18}} = \frac{1}{3} \Rightarrow \frac{{AN}}{{AB}} = \frac{{AM}}{{AC}} = \frac{1}{3}
Xét \Delta ANM và \Delta ABC có: \frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}(cmt);\hat A chung
\begin{array}{l} \Rightarrow \Delta ANM \backsim \Delta ABC(c - g - c)\\ \Rightarrow \frac{{AN}}{{AB}} = \frac{{AM}}{{AC}} = \frac{{MN}}{{CB}} = \frac{1}{3} \Rightarrow \frac{{MN}}{{15}} = \frac{1}{3} \Rightarrow MN = \frac{{15}}{3} = 5(cm).\end{array}
Đáp án : B