Cho tam giác ABC có \(BA = BC = a,AC = b.\) Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N. Tính MN
-
A.
\(MN = \frac{{2ab}}{{a + b}}\)
-
B.
\(MN = \frac{{ab}}{{a + b}}\)
-
C.
\(MN = \frac{{ab}}{{2\left( {a + b} \right)}}\)
-
D.
\(MN = \frac{{ab}}{{a + b}}\)
Xét tam giác ABC có AM là đường phân giác góc BAC nên \(\frac{{MB}}{{MC}} = \frac{{AB}}{{AC}} = \frac{a}{b}\)
Xét tam giác ABC có CN là đường phân giác góc BCA nên \(\frac{{NB}}{{NA}} = \frac{{CB}}{{AC}} = \frac{a}{b}\)
Do đó, \(\frac{{NB}}{{NA}} = \frac{{MB}}{{MC}}\) nên MN//AC (định lý Thalès đảo)
Ta có: \(\frac{{NB}}{{NA}} = \frac{{CB}}{{AC}} = \frac{a}{b} \Rightarrow \frac{{NB}}{{NB + NA}} = \frac{a}{{a + b}}\) hay \(\frac{{NB}}{{AB}} = \frac{a}{{a + b}}\)
Do đó, \(NB = \frac{{{a^2}}}{{a + b}}\)
Lại có: MN//AC nên \(\frac{{MN}}{{AC}} = \frac{{NB}}{{AB}}\) , do đó \(MN = \frac{{AC.NB}}{{AB}} = \frac{{ab}}{{a + b}}\)
Đáp án : B