Cho tam giác ABC có độ dài các cạnh lần lượt tỉ lệ với \(4:5:6\) . Cho biết \(\Delta ABC \backsim \Delta A'B'C'\) và cạnh nhỏ nhất của \(\Delta A'B'C'\) bằng 2cm. Độ dài các cạnh còn lại của tam giác \(A'B'C'\) lần lượt là
-
A.
3cm; 4cm
-
B.
2,5cm; 4cm.
-
C.
3cm; 2cm
-
D.
2,5cm; 3cm.
Theo đầu bài tam giác ABC có độ dài các cạnh lần lượt tỉ lệ với \(4:5:6\)
Và \(\Delta ABC \backsim \Delta A'B'C'\) nên \(\Delta A'B'C'\) cũng có độ dài các cạnh tỉ lệ với \(4:5:6\)
Giả sử \(A'B' < A'C' < B'C' \Rightarrow A'B' = 2cm\)
\( \Rightarrow \frac{{A'B'}}{4} = \frac{{A'C'}}{5} = \frac{{B'C'}}{6} \Rightarrow \frac{{A'C'}}{5} = \frac{{B'C'}}{6} = \frac{2}{4}\)
\(\begin{array}{l} \Rightarrow A'C' = \frac{{5.2}}{4} = 2,5(cm)\\ \Rightarrow B'C' = \frac{{6.2}}{4} = 3(cm)\end{array}\)
Độ dài các cạnh còn lại của tam giác A’B’C’ lần lượt là 2,5cm ; 3cm.
Đáp án : D