Cho tam giác ABC nhọn, đường cao $AH. $ Lấy điểm $D$ sao — Không quảng cáo

Cho \(\Delta ABC\) nhọn, đường cao $AH $ Lấy điểm $D$ sao cho $AB$ là trung trực của $HD $ Lấy điểm $E$ sao cho $AC$ là trung trực của


Đề bài

Cho \(\Delta ABC\) nhọn, đường cao $AH.$  Lấy điểm $D$ sao cho $AB$  là trung trực của $HD.$  Lấy điểm $E$  sao cho $AC$  là trung trực  của $HE.$  Gọi $M$  là giao điểm của $DE$  với $AB,N$ là giao điểm của $DE$  với $AC.$  Chọn câu đúng.

  • A.

    \(\Delta ADE\) là tam giác cân

  • B.

    $HA$  là tia phân giác của \(\widehat {MHN}\).

  • C.

    A, B đều đúng

  • D.

    A, B đều sai

Phương pháp giải

Áp dụng tính chất đường trung trực của đoạn thẳng và tính chất hai tam giác bằng nhau..

Vì $AB$  là đường trung trực của $HD$  (gt) \( \Rightarrow AD = AH\) (tính chất trung trực của đoạn thẳng)

Vì $AC$  là đường trung trực của $HE$  (gt) \( \Rightarrow AH = AE\) (tính chất đường trung trực của đoạn thẳng)

\( \Rightarrow AD = AE \Rightarrow \Delta ADE\) cân tại $A.$ Nên A đúng.

+) $M$  nằm trên đường trung trực của $HD$  nên $MD = MH$ (tính chất đường trung trực của đoạn thẳng)

Xét \(\Delta AMD\) và \(\Delta AMH\) có:

\(\)$AM$  chung.

$AD = AH$ (cmt)

$MD = MH$ (cmt)

\( \Rightarrow \Delta AMD = \Delta AMH\left( {c - c - c} \right) \Rightarrow \widehat {MDA} = \widehat {MHA}\) (2 góc tương ứng)

Lại có, $N$  thuộc đường trung trực của $HE$ nên $NH = NE$ (tính chất đường trung trực của đoạn thẳng).

+) Xét \(\Delta AHN\) và \(\Delta AEN\) có:

$AN$ chung

$AH = AE$ (cmt)

$NH = NE$ (cmt)

\( \Rightarrow \Delta AHN = \Delta AEN\left( {c - c - c} \right)\)

\(\Rightarrow \widehat {NHA} = \widehat {NEA}\) (2 góc tương ứng)

Mà \(\Delta ADE\) cân tại $A$ (cmt) \( \Rightarrow \widehat {MDA} = \widehat {NEA} \Rightarrow \widehat {MHA} = \widehat {NHA}\) .

Vậy $HA$  là đường phân giác của \(\widehat {MHN}\) .

Đáp án : C