Cho tam giác ABC nhọn, hai đường cao BD và CE. Trên tia đối — Không quảng cáo

Đề bài Cho \(\Delta ABC\) nhọn, hai đường cao BD và CE Trên tia đối của tia BD lấy điểm I sao cho \(BI = AC\) Trên tia đối của


Đề bài

Cho \(\Delta ABC\) nhọn, hai đường cao BD và CE. Trên tia đối của tia BD lấy điểm I sao cho \(BI = AC\). Trên tia đối của tia CE lấy điểm K sao cho\(CK = AB.\)

Câu 1

Chọn câu đúng.

  • A.

    \(AI > AK\)

  • B.

    \(AI < AK\)

  • C.

    \(AI = 2AK\)

  • D.

    \(AI = AK\)

Đáp án: D

Phương pháp giải

Áp dụng tính chất trong tam giác vuông 2 góc nhọn phụ nhau, tính chất 2 góc kề bù, dấu hiệu nhận biết tam giác vuông cân.

Xét \({\Delta}ABD\) có: \(\widehat {{A_1}} + \widehat {{B_1}} = {90^0}\) (trong tam giác vuông 2 góc nhọn phụ nhau)

Xét \({\Delta}AEC\) có: \(\widehat {{A_1}} + \widehat {{C_1}} = {90^0}\) (trong tam giác vuông 2 góc nhọn phụ nhau)

\( \Rightarrow \widehat {{B_1}} = \widehat {{C_1}}\left( 1 \right)\).

Lại có: $\left\{ \begin{array}{l}\widehat {{B_1}} + \widehat {{B_2}} = {180^0}\\\widehat {{C_1}} + \widehat {{C_2}} = {180^0}\end{array} \right.\left( 2 \right)$ (hai góc kề bù)

Từ \(\left( 1 \right);\;\left( 2 \right) \Rightarrow \widehat {{B_2}} = \widehat {{C_2}}\) .

Xét \(\Delta ABI\) và \(\Delta KCA\) có:

\(AB = CK\left( {gt} \right)\\\widehat {{B_2}} = \widehat {{C_2}}\left( {cmt} \right)\\BI = AC\left( {gt} \right)\)

\(\Rightarrow \Delta ABI = \Delta KCA ({c - g - c})\)\( \Rightarrow AI = AK\) (2 cạnh tương ứng)

Câu 2

\(\Delta AIK\) là tam giác gì?

  • A.

    \(\Delta AIK\)là tam giác  cân tại B.

  • B.

    \(\Delta AIK\)là tam giác vuông cân tại A.

  • C.

    \(\Delta AIK\)là tam giác vuông

  • D.

    \(\Delta AIK\)là tam giác đều

Đáp án: B

Phương pháp giải

Áp dụng tính chất trong tam giác vuông 2 góc nhọn phụ nhau, tính chất 2 góc kề bù, dấu hiệu nhận biết tam giác vuông cân.

Ta có \(AI = AK\left( {cmt} \right) \Rightarrow \Delta AIK\) cân tại A (*).

\(\Delta ABI = \Delta KCA\left( {cmt} \right) \Rightarrow \widehat {AIB} = \widehat {CAK}(3)\)(2 góc tương ứng)

Xét \({\Delta}AID\) có: \(\widehat {AID} + \widehat {IAD} = {90^0}\left( 4 \right)\)(trong tam giác vuông 2 góc nhọn phụ nhau)

Từ (3) và (4)\(\Rightarrow \widehat {IAD} + \widehat {CAK} = {90^0} \Rightarrow \Delta AIK\) vuông tại A (**)

Từ (*) và (**) \(\Rightarrow \Delta AIK\)vuông cân tại $A.$