Cho tam giác ABC, tam giác MNP biết AB = 3cm;AC = 4cm;BC = — Không quảng cáo

Cho \(\Delta ABC,\Delta MNP\) biết \(AB = 3cm AC = 4cm BC = 5cm MN = 6cm MP = 8cm NP = 10cm\) và \(\widehat A = {90^o} \widehat B


Đề bài

Cho \(\Delta ABC,\Delta MNP\) biết \(AB = 3cm;AC = 4cm;BC = 5cm;MN = 6cm;MP = 8cm;NP = 10cm\) và \(\widehat A = {90^o};\widehat B = {60^o};\widehat M = {90^o};\widehat P = {30^o}\) thì:

  • A.
    \(\Delta ABC \backsim \Delta PNM\) .
  • B.
    \(\Delta ABC \backsim \Delta NMP\) .
  • C.
    \(\Delta ABC \backsim \Delta MNP\) .
  • D.
    \(\Delta ABC \backsim \Delta MPN\) .
Phương pháp giải
Tính số đo các góc C, N và áp dụng định nghĩa hai tam giác đồng dạng.

\(\Delta ABC\) có \(\widehat C = {180^o} - \left( {\widehat A + \widehat B} \right) = {180^o} - \left( {{{90}^o} + {{80}^o}} \right) = {30^o}\) (Định lý tổng ba góc trong tam giác )

\(\Delta MNP\) có \(\widehat N = {180^o} - \left( {\widehat M + \widehat P} \right) = {180^o} - \left( {{{90}^o} + {{30}^o}} \right) = {60^o}\) (Định lý tổng ba góc trong tam giác)

Xét \(\Delta ABC\) và \(\Delta MNP\) có:

\(\frac{{AB}}{{MN}} = \frac{{18}}{6} = 3;\frac{{AC}}{{MP}} = \frac{{24}}{8} = 3;\frac{{BC}}{{NP}} = \frac{{30}}{{10}} = 3\)

\( \Rightarrow \frac{{AB}}{{MN}} = \frac{{AC}}{{MP}} = \frac{{BC}}{{NP}}\)

Vậy \(\widehat A = \widehat M\left( { = {{90}^o}} \right);\widehat B = \widehat N\left( { = {{60}^o}} \right);\widehat C = \widehat P\left( { = {{30}^o}} \right)\)

Đáp án : C