Cho tam giác ABC vuông tại A (AB > AC). Gọi I là trung điểm của AB. Kẻ IN vuông góc với BC tại N (N thuộc BC).
a) Chứng minh $\Delta ACB\backsim \Delta NIB$. Từ đó suy ra \(BA.BI = BC.BN\).
b) Giả sử AC = 6cm, BC = 10cm. Tính BN.
c) Chứng minh \(\widehat {IAN} = \widehat {ICN}\).
d) Chứng minh \(A{C^2} = N{C^2} - N{B^2}\).
a) Chứng minh $\Delta ACB\backsim \Delta NIB$ (g.g) suy ra tỉ số bằng nhau của các cặp cạnh tương ứng.
b) Dựa vào định lí Pythagore để tính AB. Sử dụng tỉ số bằng nhau của phần a để tính BN.
c) Chứng minh $\Delta ABN\backsim \Delta CBI$ (c.g.c) để chứng minh \(\widehat {IAN} = \widehat {ICN}\).
d) Kẻ \(AH \bot BC\) tại H. Chứng minh \(A{C^2} = CH.CB\).
Chứng minh BN = NH.
Sử dụng hằng đẳng thức hiệu hai bình phương để chứng minh \(A{C^2} = CH.CB = N{C^2} - N{B^2}\).
Chú ý: Độ dài các cạnh chỉ sử dụng cho ý b nên không được tính độ dài cạnh để chứng minh.
a) Xét \(\Delta ACB\) và \(\Delta NIB\) có:
\(\widehat B\) chung
\(\widehat A = \widehat N\left( { = {{90}^0}} \right)\)
$\Rightarrow \Delta ACB\backsim \Delta NIB\left( g.g \right)$ (đpcm)
\( \Rightarrow \frac{{BA}}{{BN}} = \frac{{BC}}{{BI}}\)
\( \Rightarrow BA.BI = BC.BN\) (đpcm)
b) Áp dụng định lí Pythagore vào tam giác vuông ABC, ta có:
\(\begin{array}{l}A{B^2} = B{C^2} - A{C^2} = {10^2} - {6^2} = 64\\ \Rightarrow AB = 8\left( {cm} \right)\end{array}\)
I là trung điểm của AB nên AI = IB = \(\frac{1}{2}\)AB = 4cm
Ta có: \(BA.BI = BC.BN\)
\(\begin{array}{l}8.4 = 10.BN\\ \Rightarrow BN = \frac{{8.4}}{{10}} = 3,2\left( {cm} \right)\end{array}\)
c) Xét \(\Delta ABN\) và \(\Delta CBI\) có:
\(\frac{{BA}}{{BN}} = \frac{{BC}}{{BI}}\left( {cmt} \right)\)
\(\widehat B\) chung
$\Rightarrow \Delta ABN\backsim \Delta CBI\left( c.g.c \right)$
\( \Rightarrow \widehat {IAN} = \widehat {ICN}\) (đpcm)
d) Kẻ \(AH \bot BC\) tại H.
Xét \(\Delta AHC\) và \(\Delta BAC\) có:
\(\widehat A = \widehat H\left( { = {{90}^0}} \right)\)
\(\widehat C\) chung
$\Rightarrow \Delta AHC\backsim \Delta BAC\left( g.g \right)$
\( \Rightarrow \frac{{AC}}{{CH}} = \frac{{BC}}{{AC}} \Rightarrow A{C^2} = CH.BC\).
Vì \(IN \bot BC;AH \bot BC \Rightarrow IN//AH\)
Xét tam giác ABH có IN // AH, I là trung điểm của AB nên IN là đường trung bình của tam giác ABH.
\( \Rightarrow \) N là trung điểm của BH \( \Rightarrow BN = NH\).
Ta có: \(CH.CB\)\( = \left( {CN - NH} \right)\left( {CN + BN} \right)\)\( = \left( {CN - BN} \right)\left( {CN + BN} \right)\)\( = C{N^2} - B{N^2}\)
\( \Rightarrow A{C^2} = C{N^2} - B{N^2}\) (đpcm)