Cho tam giác ABC vuông tại A, có \(AB = 3cm,AC = 4cm,AD\) là đường phân giác. Khoảng cách từ điểm D đến đường thẳng AC là:
-
A.
\(\frac{{12}}{{49}}cm\)
-
B.
\(\frac{{12}}{7}cm\)
-
C.
\(\frac{{13}}{7}cm\)
-
D.
\(\frac{{13}}{{49}}cm\)
Kẻ DE vuông góc với AC tại E, khi đó DE là khoảng cách từ D đến AC
Lại có: AB vuông góc với AC nên DE//AB
Áp dụng định lý Pytago vào tam giác ABC vuông tại A có: \(B{C^2} = A{B^2} + A{C^2} = 25\) nên \(BC = 5cm\)
Xét tam giác ABC có AD là đường phân giác của góc BAC nên \(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} = \frac{3}{4}\) nên \(BD = \frac{3}{4}DC\)
Ta có: \(BD + DC = BC\)
\(\frac{3}{4}DC + DC = 5\) nên \(DC = \frac{{20}}{7}cm\)
Tam giác ABC có DE//AB nên theo hệ quả của định lý Thalès ta có:
\(\frac{{DE}}{{AB}} = \frac{{DC}}{{BC}}\) hay \(\frac{{DE}}{3} = \frac{{\frac{{20}}{7}}}{5} = \frac{4}{7}\) nên \(DE = \frac{4}{7}.3 = \frac{{12}}{7}\left( {cm} \right)\)
Vì AD là đường phân giác của góc BAC nên \(\widehat {DAE} = \frac{1}{2}\widehat {BAC} = {45^0}\)
Mà tam giác DAE vuông tại E nên tam giác DAE vuông cân tại E. Do đó, \(DE = AE = \frac{{12}}{7}cm\)
Đáp án : B