Đề bài
Cho tam giác ABC vuông tại A có M là trung điểm của BC. Gọi I là hình chiếu của M trên AC. Chọn đáp án đúng.
-
A.
SAIMSABC=12
-
B.
SAIMSABC=13
-
C.
SAIMSABC=14
-
D.
SAIMSABC=23
Phương pháp giải
Sử dụng kiến thức trường hợp đồng dạng thứ hai của tam giác vuông: Nếu hai cạnh góc vuông của tam giác vuông này tỉ lệ với hai cạnh góc vuông của tam giác kia thì hai tam giác vuông đó đồng dạng.
Tam giác ABC vuông tại A có AM là trung tuyến nên AM=MB=12BC
Do đó, tam giác AMB cân tại M. Do đó, MI là đường cao đồng thời là đường trung tuyến nên AI=12AB⇒AIAB=12
Tam giác ABC có: M là trung điểm của CB, I là trung điểm của AB nên MI là đường trung bình của tam giác ABC nên MIAC=12
Tam giác ABC và tam giác AIM có:
^BAC=^MIA=900,AIAB=MIAC(=12) nên ΔIAM∽
Do đó, \frac{{{S_{ABC}}}}{{{S_{AMI}}}} = {\left( {\frac{{MI}}{{AC}}} \right)^2} = \frac{1}{4}
Đáp án : C