Cho tam giác ABC vuông tại A, gọi M là trung điểm của BC. Qua M vẽ đường thẳng vuông góc với AB cắt AB tại H.
Chọn đáp án đúng
-
A.
Cạnh MH là hình đồng dạng phối cảnh của cạnh AC, tâm B, tỉ số \(\frac{1}{2}\)
-
B.
Cạnh MH là hình đồng dạng phối cảnh của cạnh AC, tâm B, tỉ số 2
-
C.
Cạnh AC là hình đồng dạng phối cảnh của cạnh MH, tâm B, tỉ số \(\frac{1}{2}\)
-
D.
Cả A, B, C đều sai
- Sử dụng kiến thức về hai hình đồng dạng:
+ Hai hình H, H’ được gọi là đồng dạng nếu có hình H 1 đồng dạng phối cảnh với hình H và bằng hình H '
+ Hình H đồng dạng với hình H ’nếu hình H ’bằng hình H hoặc bằng một hình phóng to hoặc thu nhỏ của H
- Sử dụng kiến thức về hình đồng dạng phối cảnh (hình vị tự):
+ Nếu với mỗi điểm M thuộc hình \(\mathcal{K}\), lấy điểm M’ thuộc tia OM sao cho \(OM' = k.OM\) (hay \(\frac{{OM'}}{{OM}} = k\)) thì các điểm M’ đó tạo thành hình \(\mathcal{K}'\). Ta nói hình \(\mathcal{K}'\) đồng dạng phối cảnh với hình \(\mathcal{K}\) theo tỉ số đồng dạng (vị tự) k. Khi đó, điểm O là tâm phối cảnh.
+ Nếu \(k > 1\) thì ta nói \(\mathcal{K}'\) là hình phóng to của hình \(\mathcal{K}\), nếu \(k < 1\) thì ta nói \(\mathcal{K}'\) là hình thu nhỏ của hình \(\mathcal{K}\)
Ta có: \(HM \bot AB,AC \bot AB\) nên HM//AC
Tam giác ABC có: M là trung điểm của BC, HM//AC nên H là trung điểm của AB.
Do đó, \(\frac{{BH}}{{BA}} = \frac{1}{2}\)
Lại có: Mà là trung điểm của BC nên \(\frac{{BM}}{{BC}} = \frac{1}{2}\)
Suy ra: \(\frac{{BH}}{{BA}} = \frac{{BM}}{{BC}} = \frac{1}{2}\)
Mà đường thẳng AH và MC cùng đi qua điểm B.
Do đó, HM là hình đồng dạng phối cảnh của cạnh AC, tâm B, tỉ số \(\frac{1}{2}\)
Đáp án : A