Cho tam giác ABC vuông tại A, gọi M là trung điểm của BC — Không quảng cáo

Cho tam giác ABC vuông tại A, gọi M là trung điểm của BC Qua M vẽ đường thẳng vuông góc với AB cắt AB tại H Chọn đáp án


Đề bài

Cho tam giác ABC vuông tại A, gọi M là trung điểm của BC. Qua M vẽ đường thẳng vuông góc với AB cắt AB tại H.

Chọn đáp án đúng

  • A.
    Cạnh MH là hình đồng dạng phối cảnh của cạnh AC, tâm B, tỉ số \(\frac{1}{2}\)
  • B.
    Cạnh MH là hình đồng dạng phối cảnh của cạnh AC, tâm B, tỉ số 2
  • C.
    Cạnh AC là hình đồng dạng phối cảnh của cạnh MH, tâm B, tỉ số \(\frac{1}{2}\)
  • D.
    Cả A, B, C đều sai
Phương pháp giải

- Sử dụng kiến thức về hai hình đồng dạng:

+ Hai hình H, H’ được gọi là đồng dạng nếu có hình H 1 đồng dạng phối cảnh với hình H và bằng hình H '

+ Hình H đồng dạng với hình H ’nếu hình H ’bằng hình H hoặc bằng một hình phóng to hoặc thu nhỏ của H

- Sử dụng kiến thức về hình đồng dạng phối cảnh (hình vị tự):

+ Nếu với mỗi điểm M thuộc hình \(\mathcal{K}\), lấy điểm M’ thuộc tia OM sao cho \(OM' = k.OM\) (hay \(\frac{{OM'}}{{OM}} = k\)) thì các điểm M’ đó tạo thành hình \(\mathcal{K}'\). Ta nói hình \(\mathcal{K}'\) đồng dạng phối cảnh với hình \(\mathcal{K}\) theo tỉ số đồng dạng (vị tự) k. Khi đó, điểm O là tâm phối cảnh.

+ Nếu \(k > 1\) thì ta nói \(\mathcal{K}'\) là hình phóng to của hình \(\mathcal{K}\), nếu \(k < 1\) thì ta nói \(\mathcal{K}'\) là hình thu nhỏ của hình \(\mathcal{K}\)

Ta có: \(HM \bot AB,AC \bot AB\) nên HM//AC

Tam giác ABC có: M là trung điểm của BC, HM//AC nên H là trung điểm của AB.

Do đó, \(\frac{{BH}}{{BA}} = \frac{1}{2}\)

Lại có: Mà là trung điểm của BC nên \(\frac{{BM}}{{BC}} = \frac{1}{2}\)

Suy ra: \(\frac{{BH}}{{BA}} = \frac{{BM}}{{BC}} = \frac{1}{2}\)

Mà đường thẳng AH và MC cùng đi qua điểm B.

Do đó, HM là hình đồng dạng phối cảnh của cạnh AC, tâm B, tỉ số \(\frac{1}{2}\)

Đáp án : A