Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC — Không quảng cáo

Cho tam giác ABC vuông tại A Gọi M là trung điểm của BC Chọn khẳng định đúng nhất


Đề bài

Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Chọn khẳng định đúng nhất

  • A.

    Tam giác AMB đều

  • B.

    AM = BM = CM

  • C.

    AM = BC

  • D.

    AB + AC = BC

Phương pháp giải

Sử dụng các trường hợp bằng nhau của tam giác, suy ra các cạnh tương ứng bằng nhau.

Trên tia đối của tia MA lấy điểm D sao cho MA = MD. Khi đó, 2. AM = AD

Xét tam giác ABM và DCM, có:

AM = DM

\(\widehat {AMB} = \widehat {CMD}\) ( đối đỉnh)

BM = CM ( gt)

\( \Rightarrow \Delta ABM = \Delta DCM\) ( c.g.c)

\( \Rightarrow \widehat {ABC} = \widehat {BCD}\) (2 góc tương ứng); AB = CD ( 2 cạnh tương ứng)

Mà 2 góc ABC và BCD ở vị trí so le trong

\( \Rightarrow \)AB // CD

Mà AB \( \bot \) AC

\( \Rightarrow \) CD  \( \bot \) AC ( tính chất)

Xét tam giác vuông ABC và CDA có:

AC chung

\(\widehat {BAC} = \widehat {DCA}( = 90^\circ )\)

AB = CD( cmt)

\( \Rightarrow \Delta ABC = \Delta CDA\) ( c.g.c)

\( \Rightarrow \) AD = BC ( 2 cạnh tương ứng)

\( \Rightarrow \) 2. AM = BC

\( \Rightarrow \) AM = MB = MC

Đáp án : B