Cho tam giác $ABC$ vuông tại $A,$ kẻ đường cao $AH. $ Trên — Không quảng cáo

Cho tam giác $ABC$ vuông tại $A,$ kẻ đường cao $AH $ Trên cạnh $AC$ lấy điểm $K$ sao cho $AK = AH $ Kẻ \(KD \bot AC\left( {D \in


Đề bài

Cho tam giác $ABC$  vuông tại $A,$ kẻ đường cao $AH.$  Trên cạnh $AC$  lấy điểm $K$  sao cho $AK = AH.$ Kẻ \(KD \bot AC\left( {D \in BC} \right)\). Chọn câu đúng.

  • A.

    \(\Delta AHD = \Delta AKD\)

  • B.

    $AD$  là đường trung trực của đoạn thẳng $HK.$

  • C.

    \(AD\) là tia phân giác của góc \(HAK.\)

  • D.

    Cả A, B, C đều đúng.

Phương pháp giải

+ Chứng minh hai tam giác bằng nhau theo trường hợp cạnh huyền-cạnh góc vuông

+ Sử dụng tính chất hai tam giác bằng nhau để chứng minh \(AD\) là tia phân giác của góc \(HAK.\)

+ Sử dụng định lý về đường trung trực để chỉ ra $AD$  là đường trung trực của đoạn thẳng $HK.$

Xét tam giác vuông \(AHD\) và tam giác vuông \(AKD\) có

+ \(AH = AK\,\left( {gt} \right)\)

+ \(AD\) chung

Suy ra \(\Delta AHD = \Delta AKD\left( {ch - cgv} \right)\) nên A đúng

Từ đó ta có \(HD = DK;\,\widehat {HAD} = \widehat {DAK}\)  suy ra \(AD\) là tia phân giác góc \(HAK\) nên C đúng.

Ta có \(AH = AK\left( {gt} \right)\) và \(HA = DK\left( {cmt} \right)\) suy ra \(AD\) là đường trung trực đoạn \(HK\) nên B  đúng.

Vậy cả A, B, C đều đúng.

Đáp án : D