Cho tam giác \({\rm{ABC}}\) vuông tại \(A(AB < AC)\), kẻ đường cao \({\rm{AH}}\), đường trung tuyến \({\rm{AM}}\). Đường thẳng vuông góc với \({\rm{AM}}\) tại \(A\) cắt đường thẳng \({\rm{BC}}\) tại \(D\). Chứng minh rằng: a) \({\rm{AB}}\) là tia phân giác của \(\widehat {DAH}\). b) \(BH.CD = BD.CH\).
a) Chứng minh bắc cầu: \(\left\{ {\begin{array}{*{20}{l}}{\widehat {DAB} + \widehat {BAM} = \widehat {DAM} = {{90}^0}\left( {do\,AM \bot AD} \right)}\\{\widehat {BAH} + \widehat {ABH} = \widehat {AHB} = {{90}^0}\left( {do\,AH \bot BC} \right)}\end{array}} \right.\)
Chứng minh được: \(\widehat {MBA} = \widehat {MAB}\)
suy ra \(\widehat {DAB} = \widehat {BAH}\) (cùng phụ với hai góc bằng nhau)
b) Sử dụng tính chất đường phân giác trong \({\rm{AB}}\) của tam giác \({\rm{ADH}}\)
Sử dụng tính chất đường phân giác ngoài \({\rm{AC}}\) tại đỉnh \({\rm{A}}\) của tam giác \({\rm{ADH}}\).
a) \(\Delta ABC\) vuông tại \(A\), đường trung tuyến \(AM\) nên \(AM = MB\) suy ra \(\Delta AMB\) cân tại \(M\)
suy ra \(\widehat {MBA} = \widehat {MAB}\) hay \(\widehat {BAM} = \widehat {ABH}\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{\widehat {DAB} + \widehat {BAM} = \widehat {DAM} = {{90}^0}\left( {do\,AM \bot AD} \right)}\\{\widehat {BAH} + \widehat {ABH} = \widehat {AHB} = {{90}^0}\left( {do\,AH \bot BC} \right)}\end{array}} \right.\)
suy ra \(\widehat {DAB} = \widehat {BAH}\) (cùng phụ với hai góc bằng nhau)
suy ra \(AB\) là tia phân giác của \(\widehat {DAH}\).
b) Vì \(AB\) là tia phân giác của \(\widehat {DAH}\) nên \(\frac{{BH}}{{BD}} = \frac{{AH}}{{AD}}\) (tính chất đường phân giác)
Vì \(AC \bot AB,\widehat {DAH}\) kề bù với \(\widehat {HAx}\) nên \(AC\) là tia phân giác \(\widehat {HAx}\) suy ra \(\frac{{CH}}{{CD}} = \frac{{AH}}{{AD}}\)
Suy ra \(\frac{{BH}}{{BD}} = \frac{{AH}}{{AD}} = \frac{{CH}}{{CD}}\). Do đó \(BH \cdot CD = CH \cdot BD\).