Cho tam giác OAB. Gọi C, D lần lượt là trung điểm của OA — Không quảng cáo

Cho tam giác OAB Gọi C, D lần lượt là trung điểm của OA và OB Chọn đáp án đúng


Đề bài

Cho tam giác OAB. Gọi C, D lần lượt là trung điểm của OA và OB.

Chọn đáp án đúng.

  • A.
    Cạnh CD là hình đồng dạng phối cảnh của cạnh AB với tỉ số \(k = \frac{1}{2}\), tâm phối cảnh là điểm O
  • B.
    Cạnh CD là hình đồng dạng của cạnh AB với tỉ số \(k = \frac{1}{2}\)
  • C.
    Cả A, B đều đúng
  • D.
    Cả A, B đều sai
Phương pháp giải
Sử dụng kiến thức về hình đồng dạng phối cảnh (hình vị tự):

+ Nếu với mỗi điểm M thuộc hình \(\mathcal{K}\), lấy điểm M’ thuộc tia OM sao cho \(OM' = k.OM\) (hay \(\frac{{OM'}}{{OM}} = k\)) thì các điểm M’ đó tạo thành hình \(\mathcal{K}'\). Ta nói hình \(\mathcal{K}'\) đồng dạng phối cảnh với hình \(\mathcal{K}\) theo tỉ số đồng dạng (vị tự) k. Khi đó, điểm O là tâm phối cảnh.

+ Nếu \(k > 1\) thì ta nói \(\mathcal{K}'\) là hình phóng to của hình \(\mathcal{K}\), nếu \(k < 1\) thì ta nói \(\mathcal{K}'\) là hình thu nhỏ của hình \(\mathcal{K}\)

+ Hai hình đồng dạng phối cảnh (hay vị tự) cũng là hai hình đồng dạng.

Vì C là trung điểm của OA nên \(OC = \frac{1}{2}OA\)

Vì D là trung điểm của OB nên \(OD = \frac{1}{2}OB\)

Mà O là giao điểm của AC và BD nên cạnh CD là hình đồng dạng phối cảnh của cạnh AB với tỉ số đồng dạng \(k = \frac{1}{2}\) , tâm phối cảnh là điểm O.

Do đó, cạnh CD là hình đồng dạng của cạnh AB với tỉ số \(k = \frac{1}{2}\)

Suy ra, cả A, B đều đúng.

Đáp án : C