Cho tỉ lệ thức a/b = c/d. Chứng minh: Ab/cd = a^2 - B^2/c^2 — Không quảng cáo

Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\) Chứng minh \(\frac{{ab}}{{cd}} = \frac{{{a^2} - {b^2}}}{{{c^2} - {d^2}}}\)


Đề bài

Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\). Chứng minh: \(\frac{{ab}}{{cd}} = \frac{{{a^2} - {b^2}}}{{{c^2} - {d^2}}}\).

Phương pháp giải

Đặt \(\frac{a}{b} = \frac{c}{d} = k\).

Áp dụng dãy tỉ số bằng nhau để chứng minh.

Đặt \(\frac{a}{b} = \frac{c}{d} = k \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = bk}\\{c = dk}\end{array}} \right.\)

Do đó ta có:

\(\frac{{ac}}{{bd}} = \frac{{bkdk}}{{bd}} = {k^2}(1)\)

Ta cũng có:

\(\frac{{{a^2} + {c^2}}}{{{b^2} + {d^2}}} = \frac{{{{(bk)}^2} + {{(dk)}^2}}}{{{b^2} + {d^2}}} = \frac{{{b^2}{k^2} + {d^2}{k^2}}}{{{b^2} + {d^2}}} = \frac{{{k^2}\left( {{b^2} + {d^2}} \right)}}{{{b^2} + {d^2}}} = {k^2}(2)\)

Từ (1) và (2) suy ra:

\(\frac{{ac}}{{bd}} = \frac{{{a^2} + {c^2}}}{{{b^2} + {d^2}}} = \left( {{k^2}} \right)\) (đpcm)