Cho tứ diện ABCD có BA, BC, BD đôi một vuông góc và BA = BC = BD = 1. Gọi I là trung điểm của AC.
a) \(\overrightarrow {BA} + \overrightarrow {CD} = \overrightarrow {BD} + \overrightarrow {CA} \)
b) \(\overrightarrow {BA} .\overrightarrow {BD} = \overrightarrow {BC} .\overrightarrow {BD} = \overrightarrow {BC} .\overrightarrow {BA} = - 1\)
c) \(\overrightarrow {BI} .\overrightarrow {CD} = - \frac{1}{2}\)
d) \(\left( {\overrightarrow {BI} .\overrightarrow {CD} } \right) = {120^o}\)
a) \(\overrightarrow {BA} + \overrightarrow {CD} = \overrightarrow {BD} + \overrightarrow {CA} \)
b) \(\overrightarrow {BA} .\overrightarrow {BD} = \overrightarrow {BC} .\overrightarrow {BD} = \overrightarrow {BC} .\overrightarrow {BA} = - 1\)
c) \(\overrightarrow {BI} .\overrightarrow {CD} = - \frac{1}{2}\)
d) \(\left( {\overrightarrow {BI} .\overrightarrow {CD} } \right) = {120^o}\)
Sử dụng các quy tắc cộng, trừ vecto và lý thuyết các vecto bằng nhau, các vecto đối nhau, góc giữa hai vecto.
a) Đúng. Vì \(\overrightarrow {BA} + \overrightarrow {CD} = \overrightarrow {BD} + \overrightarrow {CA} \Leftrightarrow \overrightarrow {BA} + \overrightarrow {AC} = \overrightarrow {BD} + \overrightarrow {DC} \Leftrightarrow \overrightarrow {BC} = \overrightarrow {BC} \) (luôn đúng)
b) Sai. Vì các vecto \(\overrightarrow {BA} ,\overrightarrow {BC} ,\overrightarrow {BD} \) đôi một vuông góc với nhau nên tích vô hướng của chúng bằng 1.
c) Đúng. Gọi M là trung điểm của AD, ta có \(IM = BM = BI = \frac{{DC}}{2}\) nên tam giác BMI đều.
Suy ra \(\widehat {MIB} = {60^o} = \left( {\overrightarrow {IM} ,\overrightarrow {IB} } \right) = \left( {\overrightarrow {CD} ,\overrightarrow {IB} } \right) \Rightarrow \cos {60^o} = \cos \left( {\overrightarrow {CD} ,\overrightarrow {IB} } \right)\)
\( \Rightarrow - \cos {60^o} = \cos \left( {\overrightarrow {CD} ,\overrightarrow {BI} } \right) \Rightarrow \cos \left( {\overrightarrow {CD} ,\overrightarrow {BI} } \right) = \frac{{ - 1}}{2}\).\(\)
d) Đúng. Vì \(\cos \left( {\overrightarrow {CD} ,\overrightarrow {BI} } \right) = \frac{{ - 1}}{2} \Rightarrow \left( {\overrightarrow {CD} .\overrightarrow {BI} } \right) = {120^o}\).