Cho tứ diện ABCD có các cạnh đều bằng a.
a) \(\overrightarrow {AD} + \overrightarrow {CB} + \overrightarrow {BC} + \overrightarrow {DA} = \overrightarrow 0 \)
b) \(\overrightarrow {AB} .\overrightarrow {BC} = - \frac{{{a^2}}}{2}\)
c) \(\overrightarrow {AC} .\overrightarrow {AD} = \overrightarrow {AC} .\overrightarrow {CD} \)
d) \(AB \bot CD\)
a) \(\overrightarrow {AD} + \overrightarrow {CB} + \overrightarrow {BC} + \overrightarrow {DA} = \overrightarrow 0 \)
b) \(\overrightarrow {AB} .\overrightarrow {BC} = - \frac{{{a^2}}}{2}\)
c) \(\overrightarrow {AC} .\overrightarrow {AD} = \overrightarrow {AC} .\overrightarrow {CD} \)
d) \(AB \bot CD\)
Sử dụng quy tắc cộng vecto, lý thuyết các vecto bằng nhau, vecto đối nhau, công thức tính góc giữa hai vecto.
a) Đúng . \(\overrightarrow {AD} + \overrightarrow {CB} + \overrightarrow {BC} + \overrightarrow {DA} = \overrightarrow {AD} + \overrightarrow {DA} + \overrightarrow {BC} + \overrightarrow {CB} = \overrightarrow 0 \) .
b) Đúng. \(\overrightarrow {AB} .\overrightarrow {BC} = - \overrightarrow {BA} .\overrightarrow {BC} = - a.a.\cos {60^o} = - \frac{{{a^2}}}{2}\) .
c) Sai . \(\overrightarrow {AC} .\overrightarrow {AD} = a.a.\cos {60^o} = \frac{{{a^2}}}{2}\) , \(\overrightarrow {AC} .\overrightarrow {CD} = - \overrightarrow {CA} .\overrightarrow {CD} = - a.a.\cos {60^o} = - \frac{{{a^2}}}{2}\) .
d) Đúng. Giả sử I là trung điểm của CD thì \(CD \bot (ABI)\), suy ra \(CD \bot AB\).