Cho tứ diện ABCD có các cạnh đều bằng a — Không quảng cáo

Đề bài Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây Cho tứ diện ABCD có các cạnh đều bằng a a) \(\overrightarrow {AD}


Đề bài
Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây.

Cho tứ diện ABCD có các cạnh đều bằng a.

a) \(\overrightarrow {AD}  + \overrightarrow {CB}  + \overrightarrow {BC}  + \overrightarrow {DA}  = \overrightarrow 0 \)

Đúng
Sai

b) \(\overrightarrow {AB} .\overrightarrow {BC}  =  - \frac{{{a^2}}}{2}\)

Đúng
Sai

c) \(\overrightarrow {AC} .\overrightarrow {AD}  = \overrightarrow {AC} .\overrightarrow {CD} \)

Đúng
Sai

d) \(AB \bot CD\)

Đúng
Sai
Đáp án

a) \(\overrightarrow {AD}  + \overrightarrow {CB}  + \overrightarrow {BC}  + \overrightarrow {DA}  = \overrightarrow 0 \)

Đúng
Sai

b) \(\overrightarrow {AB} .\overrightarrow {BC}  =  - \frac{{{a^2}}}{2}\)

Đúng
Sai

c) \(\overrightarrow {AC} .\overrightarrow {AD}  = \overrightarrow {AC} .\overrightarrow {CD} \)

Đúng
Sai

d) \(AB \bot CD\)

Đúng
Sai
Phương pháp giải

Sử dụng quy tắc cộng vecto, lý thuyết các vecto bằng nhau, vecto đối nhau, công thức tính góc giữa hai vecto.

a) Đúng . \(\overrightarrow {AD}  + \overrightarrow {CB}  + \overrightarrow {BC}  + \overrightarrow {DA}  = \overrightarrow {AD}  + \overrightarrow {DA}  + \overrightarrow {BC}  + \overrightarrow {CB}  = \overrightarrow 0 \) .

b) Đúng. \(\overrightarrow {AB} .\overrightarrow {BC}  =  - \overrightarrow {BA} .\overrightarrow {BC}  =  - a.a.\cos {60^o} =  - \frac{{{a^2}}}{2}\) .

c) Sai . \(\overrightarrow {AC} .\overrightarrow {AD}  = a.a.\cos {60^o} = \frac{{{a^2}}}{2}\) , \(\overrightarrow {AC} .\overrightarrow {CD}  =  - \overrightarrow {CA} .\overrightarrow {CD}  =  - a.a.\cos {60^o} =  - \frac{{{a^2}}}{2}\) .

d) Đúng. Giả sử I là trung điểm của CD thì \(CD \bot (ABI)\), suy ra \(CD \bot AB\).