Cho tứ diện ABCD có tất cả các cạnh bằng nhau. Gọi M là — Không quảng cáo

Cho tứ diện ABCD có tất cả các cạnh bằng nhau Gọi M là trung điểm của CD Góc giữa hai đường thẳng AB và CD bằng


Đề bài

Cho tứ diện ABCD có tất cả các cạnh bằng nhau. Gọi M là trung điểm của CD. Góc giữa hai đường thẳng AB và CD bằng:

  • A.
    \({30^0}\).
  • B.
    \({60^0}\).
  • C.
    \({90^0}\).
  • D.
    \({45^0}\).
Phương pháp giải

+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng (P) thì \(d \bot \left( P \right)\).

+ Nếu một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.

Vì \(AC = AD = CD\) nên tam giác ACD là tam giác đều. Do đó, AM là đường trung tuyến đồng thời là đường cao. Do đó, \(AM \bot CD\)

Vì \(BC = BD = CD\) nên tam giác BCD là tam giác đều. Do đó, BM là đường trung tuyến đồng thời là đường cao. Do đó, \(BM \bot CD\)

Vì \(AM \bot CD\), \(BM \bot CD\), AM, BM cắt nhau tại M và nằm trong mặt phẳng ABM.

Do đó, \(CD \bot \left( {AMB} \right)\). Mà \(AB \subset \left( {ABM} \right) \Rightarrow AB \bot CD\)

Do đó, góc giữa hai đường thẳng AB và CD bằng \({90^0}\).

Đáp án C.

Đáp án : C