Cho tứ diện ABCD. Gọi I là trung điểm của AB, J là điểm thuộc cạnh AD sao cho \(JA = 3JD\). Giao điểm của đường thẳng IJ và mặt phẳng (BDC) là:
-
A.
Giao điểm của IJ và BC .
-
B.
Giao điểm của IJ và DC.
-
C.
Giao điểm của IJ và AB.
-
D.
Giao điểm của IJ và DB.
Sử dụng kiến thức về cách tìm giao điểm của đường thẳng và mặt phẳng: Để tìm giao điểm của đường thẳng a và mặt phẳng \(\left( \alpha \right)\) ta làm như sau:
+ Tìm trong mặt phẳng \(\left( \alpha \right)\) đường thẳng b sao cho b cắt a tại A.
+ Khi đó, A là giao điểm của đường thẳng a và mặt phẳng \(\left( \alpha \right)\).
Trong mặt phẳng (ABD), gọi E là giao điểm của IJ và BD.
Ta có: \(\left\{ \begin{array}{l}E \in IJ\\E \in BD \subset \left( {CBD} \right)\end{array} \right.\) nên E là giao điểm của đường thẳng IJ và mặt phẳng (BDC).
Đáp án : D