Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Hình chiếu vuông góc của A trên mặt phẳng (COB) là điểm nào?
-
A.
Q (Q là trung điểm của OB).
-
B.
B.
-
C.
O.
-
D.
H (H là trung điểm của OC).
+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng (P) thì d⊥(P).
+ Cho mặt phẳng (P). Xét một điểm M tùy ý trong không gian. Gọi d là đường thẳng đi qua điểm M và vuông góc với (P). Gọi M’ là giao điểm của đường thẳng d và mặt phẳng (P). Khi đó, điểm M’ được gọi là hình chiếu vuông góc của điểm M lên mặt phẳng (P).
Vì OA⊥OB,OA⊥OC và OB và OC cắt nhau tại O và nằm trong mặt phẳng (OBC) nên OA⊥(OBC) nên O là hình chiếu vuông góc của A trên mặt phẳng (COB).
Đáp án C.
Đáp án : C