Đề bài
Cho tứ giác ABCD có góc ngoài tại đỉnh D bằng \({50^o}\) ; góc ngoài tại đỉnh A bằng \({100^o}\) . Tỉnh tổng \(\widehat A + \widehat D\) trong tứ giác ABCD là:
-
A.
\({100^o}\)
-
B.
\({130^o}\)
-
C.
\({80^o}\)
-
D.
\({210^o}\)
Phương pháp giải
Tính các góc trong tại hai đỉnh A, D
Tổng hai góc trong và góc ngoài tại một đỉnh của tứ giác bằng \({180^o}\)
Vì góc ngoài đỉnh D bằng \({50^o}\) nên góc trong tại đỉnh D là: \(\widehat D = {180^o} - {50^o} = {130^o}\)
Vì góc ngoài tại đỉnh A bằng \({100^o}\) nên góc trong tại đỉnh A là: \(\widehat A = {180^o} - {100^o} = {80^o}\)
Suy ra: \(\widehat A + \widehat D = {80^o} + {130^o} = {210^o}\)
Đáp án : D